Speaker:

Associate Professor Rommie Amaro, Principal Investigator, Amaro Lab, University of California (San Diego).

 

Abstract:

With exascale computing power on the horizon, computational studies have the opportunity to make unprecedented contributions to drug discovery efforts.

Steady increases in computational power, coupled with improvements in the underlying algorithms and available structural experimental data, are enabling new paradigms for discovery, wherein computationally predicted ensembles from large-scale biophysical simulations are being used in rational drug design efforts. Such investigations are driving discovery efforts in collaboration with leading experimentalists.

I will describe our work in this area that has provided key insights into the systematic incorporation of structural information resulting from state-of-the-art biophysical simulations into protocols for inhibitor and drug discovery, with emphasis on the discovery of novel druggable pockets that may not be apparent in crystal structures. 

I will also discuss how we are developing capabilities for multi-scale dynamic simulations that cross temporal scales from the picoseconds of macromolecular dynamics to the physiologically important time scales of cells (milliseconds to seconds).

Our efforts are driven by gaps in current abilities to connect across scales where it is already clear that new approaches and insights will translate into novel biomedical research discoveries and therapeutic strategies.

 

Bio:

Dr Rommie Amaro is the Principal Investigator of the Amaro Lab at the University of California (San Diego) and also the Director of the university’s National Biomedical Computation Resource.

In 2012, Dr Amaro opened her lab in UCSD’s Department of Chemistry and Biochemistry. Research in the Amaro Lab is broadly concerned with the development and application of state-of-the-art computational methods to address outstanding questions in drug discovery and molecular-level biophysics.

Her lab focuses mainly on targeting neglected diseases, Chlamydia, influenza, and cancer, and works closely with experimental collaborators to catalyse the discovery of new potential therapeutic agents. 

The Amaro Lab is also keenly interested in developing new multi-scale simulation methods and novel modeling paradigms that scale from the level of atoms to whole cells, and beyond.

About RCC/MURPA Seminar Series

RCC and MURPA (Monash Undergraduate Research Projects Abroad) co-host an IT-focused seminar series in the second semester each year.

Speakers are leaders in their field — from either the academic world, government or industry — and are often based overseas. 

Speakers and seminar attendees at UQ and Monash University are connected via the universities' advanced videoconferencing facilities. 

The UQ location is room 505A, level 5, Axon Building (47), St Lucia Campus. Please address enquiries to Fran Moore at: rcc-admin@uq.edu.au.

The Monash University location is Lecture Theatre S3, 16  Rainforest Walk, Clayton Campus. Please address enquiries to Caitlin Slattery at: caitlin.slattery@monash.edu.

Venue

Axon Building 47, The University of Queensland (St Lucia)
Room: 
505A