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Data Intensive Computing 



Data-Intensive Computing 
•  Very large data-sets or very large input-output 

requirements 
•  Two data-intensive application classes are important and 

growing 

Data Mining &
 Data Analytics



Data-Intensive Computing 
•  Examples Applications: 

–  Genome sequence assembly 
–  Climate simulation analysis 
–  Social network analysis 



Infrastructure for Data Intensive 
Computing 

•  Computation 
–  Large amounts of main memory 
–  Parallel processors 
–  Smooth out memory pyramid 

•  Storage 
–  Significant long term storage 
–  Smooth out the memory pyramid 
–  Many views of same data 

•  Parallel File System  
•  Local access (POSIX) 
•  Remote collaboration and sharing (Object store) 
•  Sync-and-share 
•  Web 
•  Cloud 



Turtles Caches all the way down 
“a jocular expression of the infinite 
regress problem in cosmology 
posed by the "unmoved mover" 
paradox.  
The metaphor in the anecdote 
represents a popular notion of the 
theory that Earth is actually flat and 
is supported on the back of a 
World Turtle, which itself is 
propped up by a chain of larger 
and larger turtles.  
Questioning what the final turtle 
might be standing on, the anecdote 
humorously concludes that it is 
turtles all the way down”” 
 https://en.m.wikipedia.org/wiki/Turtles_all_the_way_down 

 
 

Registe
rs  

Cache 

Local Memory 

Remote Memory 

Flash Drives 

Spinning Disk 

Magnetic Tape 



Use cases 



Analyze	Capture	 Store	

Publish	&		
Share	

Pre-process	

Interpret	

Use Case: Microscopy 
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Use Case: Personal Genomics 



Build	PaAent		
Specific	Models	

Store	Capture	

SimulaAon	VisualisaAon	

Use Case: Cardiac Science 



Infrastructure Challenges of 
Big Data  



Red Shift: Data keeps moving further  away from the 
CPU with every turn of Moore’s Law 
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It’s always been caches all the way down 

Explicit vs Implicit management 



Memory Hierarchy 
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Data Intensive Computation Engine 
•  Parallel 

–  High performance network 
–  Good numeric performance 

•  Massive memory 
–  Ability to hold whole data 

sets or data bases in 
memory 

•  High IO throughput 



FlashLite 
•  High throughput solid state 

disk  
•  Large amounts of main 

memory 
•  Software shared memory 
•  Inspired by SDSC Gordon 



Why is flash SSD better than 
disk? 

•  Read latency for random IO 
is up to 100x faster than 
HDD (read head seek time) 

•  This speeds up database 
accesses enormously 



What is FlashLite? 
•  FlashLite 

–  ~ 70 compute nodes (~1600 cores) 
•  Dual socket Intel E5-2680v3 2.5GHz (Haswell)  
•  512 GB DDR-2 
•  4.8 TB NVMe SSD 

–  ScaleMP vSMP virtual shared memory 
•  4TB RAM aggregate(s) 



FlashLite: Data Intensive Themes 
ARC LIEF grant 

•  Directly manipulate large amounts of data  
–  Large Memory Database  

Systems (Zhou, UQ)  
–  Machine Learning and Classification (Zhang, Zhu, Tao and Chen, UTS)   

•  Integrate observational data and computation 
–  Astrophysics (Drinkwater, UQ) 
–  Healthy hearts (Burrage, Turner, QUT; 

Abramson, UQ).   
–  Coastal Management (Tomlinson, Griffith) 
–  Climate Change (Mackey, Griffith) 
–  LIDAR processing (Olley, Griffith) 

•  Large main memories to operate efficiently 
–  Genomics (Edwards, UWA/UQ; Coppel, Monash; Griffiths, Griffith) 

•  Significant temporary storage requirements. 
–  Computational Chemistry (Bernhardt, UQ; Du, QUT)  



Results to date 



Significant Temporary Storage 
Marlies Hankel, AIBN 

•  Gaussian 90 
•  Coupled cluster with single and double 

(substitutions from Hartree-Fock) 
–  24 cores, 30GB of ram for jobs, 200GB MaxDisk, 

about 143GB used 
•  Walltime with SSD=  120751 s 
•  Walltime with GPFS = 239289 s 
•  1.98 speedup 

•  Moeller-Plesset second order correlation 
energy correction 

–  24 cores, 250GB of ram for job, 100GB MaxDisk, 
about 1GB used 

•  Walltime with SSD= 21191 s 
•  Walltime with GPFS = 34653 s 
•  1.63 speedup 



MPI with lots of memory 
Christoph Rohmann , AIBN 

•  VASP 
•  Job running within one node on FlashLite used ~232GB of memory.  
•  So need 48 cores with 5GB per core on Tinaroo to be able to run this job. 
 
Cluster	 cores	 ram/core	 flashdrive	 wallAme/s	

Tinaroo	 24	

FlashLite	 24	 6GB	 no	
Insufficient	
memory	

FlashLite	 24	 10GB	 no	 10709	

FlashLite	 24	 10GB	 yes	 8489	

FlashLite	 48	 6GB	 no		 8705	

Tinaroo	 48	 5GB	 no	 7799	



Large Shared Memory Machine 
Kevin Smith, RCC, UQ 

Juan Daniel Montenegro, School of Agriculture & Food Science, UQ   

•  MSTMap 
•  The advent of the genomics era has increased 

exponentially the amount of data that needs to 
be analysed.  

–  Marker datasets now contain millions of markers 
instead of thousands. 

•  Cluster and order markers on a genetic linkage 
map. 

•  Efficient in memory management and “large” 
data sets with thousands of genetic markers. 

•  It uses an “all vs all” distance calculation that 
can be parallelised. 

•  OpenMP & C, vSMP 
PLoS Genet. 2008 Oct; 4(10): e1000212. 



Hybrid SMP and DMM 
Lutz Gross, Cihan Altinay, School of Earth Sciences, UQ 

•  eScript 
•  Solution of Partial Differential Equations (PDE) using 

Finite Elements (FEM) 
•  Timings @ 120 cores 

–  MPI Only 
•  Speedup: 54 

–  MPI and OpenMP 
•  Speedup: 52 

–  OpenMP Only (vSMP) 
•  Speedup of 41 

 

    



Large Memory 
Ondrej Hlinka, Stuart Stephen, CSIRO 

•  BioKanga – Genome Assembly 
•  Integrated toolkit of high performance bioinformatics 

subprocesses targeting the challenges of next generation 
sequencing analytics.  

•  Highly efficient short-read aligner which incorporates an 
empirically derived understanding of sequence uniqueness within 
a target genome 

–  Hamming distances between putative alignments to the targeted 
genome assembly for any given read as the discrimative acceptance 
criteria 

–  can process billions of reads against targeted genomes containing 100 
million contigs and totaling up to 100Gbp of sequence. 

•  A large synthetic dataset (Similar CPUs): 
–  Dell blade with 48 (2.1GHz) cores 3TB of RAM   32.25 hours 
–  SGI UV 3K 48 (2.6GHz) cores and 3TB RAM   36.80 hours 
–  FlashLite (MEX mode) – 24 (2.5 GHz) cores and 3TB RAM (6 nodes)  38.62 hours 
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MeDiCI 



MeDiCI 
But the caches continue … 
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MeDiCI 
•  Centralising research data storage and computation 
•  Distributed data is further from both the instruments 

that generate it, some of the computers that process 
it, and the researchers that interpret it.  

•  Existing mechanisms manually move data 
•  MeDiCI solves this by  

–  Augmenting the existing infrastructure,  
–  Implementing on campus caching  
–  Automatic data movement 

•  Current implementation based on IBM Spectrum 
Scale (GPFS) and SGI DMF 
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MeDiCI also unifies data access 

Parallel 
File 
System 

Object 
Store 

File shares 

Sync-and-share 



MeDiCI as a parallel file system 
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Accessing long term collections 
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MeDiCI Wide Area Architecture 
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MeDiCI Wide Area Architecture 
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Object Storage 
•  S3 style objects becoming defacto 

standard for distributing data 
•  http put/get protocol 
•  Swift over GPFS 

– Unified Object/file 
interfaces 



Identity! 
•  No single UID space 

across UQ/QCIF users 
•  Need to map UID space  

between UQ and Polaris 
•  GPFS 4.2 

–  mmname2uid/mmuid2name 



Building on basic architecture 
•  A Declarative Machine Room 
•  Leveraging Cloud Storage 
•  Very Very Wide Area File Systems 
•  Supporting repository stacks 
•  Orchestrating Workflows 



A Declarative Machine Room? 
•  Static allocation of disk  

and tape 
•  Policy driven allocation 

RULE 'prefetch-list' 
LIST 'toevict' 
 
WHERE  CURRENT_TIMESTAMP - ACCESS_TIME >  
INTERVAL  '7' DAYS 
  AND  REGEX(misc_attributes,'[P]') /* only list AFM managed files */ 



MeDiCI Very Wide Area 
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Alternative Backends 
GPFS 
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MeDiCI goes East 



MeDiCI goes South and West 

AARnet X 

Remote	Data	Centre	

Raijin, NCI 
Magnus, Pawsey 



Remote	Data	Centre	
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MeDiCI goes to 
the Amazon 



Caches under Managed Data Stacks 

http: 60 seconds 

GPFS: 5 seconds 

3.66 GB  



Caches under workflows 
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What’s missing? 
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Memory Hierarchy 
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Conclusions 
•  FlashLite 

–  Parallel computer 
–  Very large amounts of 

local memory and Flash 
disk 

–  Still learning what works 
•  MeDiCI 

–  Caches all the way down 
–  IBM Spectrum Scale & 

HPE DMF 
•  Need to remove the speed 

bumps 



Conclusions 
•  Caches all the way down 
•  IBM Spectrum Scale &  

HPE DMF 
•  From Metro to  

Wide area 
–  North (JCU) 
–  East (US) 
–  West (Pawsey) 
–  South (NCI) 
–  … to the Amazon 
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