
David Abramson

Research Computing Centre,
University of Queensland,

Brisbane
Australia

1

It’s not my fault!
Finding errors in parallel codes

Minh Dinh (UQ)
Chao Jin (UQ)

Luiz DeRose (Cray)
Bob Moench (Cray)
Andrew Gontarek (Cray)

找並行程序的錯誤�

State of the art in debugging?

printf(“%f %f %f\n”, a[i], b[i], c[i])
a.out

a.out > dumpfile; b.out > dumpfile1
diff dumpfile1 dumpfile2 2

•  Titan
–  299,008 AMD Opteron cores
–  18,688 Nvidia Tesla K20 GPU Accelerators
–  710 TB system memory, 32 GB + 6 GB per node

(w/accelerator)
–  18,688 compute nodes

•  Sunway TaihuLight
–  40,960 SW26010 manycore

64-bit RISC processors
–  Each processor chip contains

•  256 processing cores,
•  4 auxiliary

–  10,649,600 CPU cores

Supercomputing requires
extreme debugging

Debugging large codes
•  Cognitive challenge

–  Large number of processes
•  Particular problems for UI

–  Large data structures
•  Infeasible to examine individual cells of

multi-dimensional, floating
point, structures.

–  Heterogeneity
•  A great source of errors
•  Hard to debug when do fail

•  Performance Challenge
–  High level debugging is expensive
–  Debuggers generally don't use

underlying parallel platform

•  In the Exascale this just gets worse! 4

COMPARATIVE DEBUGGING

5

Debugging Evolved Applications
•  Large codes are constantly evolving

– User requirements
– Underlying algorithms
– New architectures

•  Subtle errors occur often
– Programmers spend lots of time debugging
–  Identify the source of a discrepancy
– Follow it back to original source of deviation

6

Comparative Debugging
•  What is comparative debugging?

–  Data centric approach
–  Two applications, same data
–  Key idea: The data should match
–  Quickly isolate deviating variables
–  Focus is on where deviations occur

•  How does this help me?
–  Algorithm re-writes
–  Language ports
–  Different libraries/compilers
–  New architectures

7

Comparative Debugging
•  Specify conditions for correct behavior prior to

execution
•  Debugger:

–  keeps track of breakpoints
–  performs comparison automatically

•  Control returned to user:
–  examination of state
–  continuation of execution

assert P1::big[100..199]@”file.c”:240 = P2::small@”prog.f”:300

8

Why this works?

•  Iterative refinement of problem area

9

Why this works?

•  Iterative refinement of problem area

10

Why this works?

•  Iterative refinement of problem area

11

Why this works?

•  Iterative refinement of problem area

12

VISUALIZATION

13

Reporting Differences

Starting execution of processes
Comparing c and c.
Maximum difference between values: 1.15442e-23
Total difference between values: 4.37116e-23
Number of differences detected = 823
First 10 errors are:
At Index : (30) = (Diff, Value 1, Value2) 0.000488
At Index : (32) (32) = (Diff, Value 1, Value2) 0.

Values of scalars, small arrays

2-D pixel maps

Multi-dimensional
visualisation

Movies

14

The power of visualization

15

•  Difference in physics of planetary boundary layer
–  Computation of #steps suited to parallel execution
–  Evident in 3 dimensional visualisation

•  Error in radiation
time step computation

•  More complete physics
in long wave radiation LWRAD

HIRPBL

The power of visualization

16

The power of visualization

- =
17

18

SCALABILITY

19

Head node

Interconnection Network

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

Data Data Data Data

Reference Data

?

Data Data Data Data

Suspect Data

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

Copied

Combined

Compared

Compute
Node

Original Design

20

Debug
Server

Debug
client

Debug
Server

Debug
Server

Debug
Server

Debug
Server

Debug
Server

?

Reference Signature Array Suspect Signature Array

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Sub-
structure

Sub-
structure

Sub-
structure

Multi
signatures

Multi
signatures

Multi
signatures

Sub-
structure

Sub-
structure

Sub-
structure

Multi
signatures

Multi
signatures

Multi
signatures

Hash Hash Hash Hash Hash Hash

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Network
Insfractructure

21

Point to Point protocol

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

?

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

?

Head node

Interconnection Network

22

CCDB ARCHITECTURE

Overall architecture

CPU GPU BCB

$ref $sus

Ghost
Cells

GDB
CCDB Server

Compute
Node

GDB
CCDB Server

Compute
Node Compute

Node
CUDA-GDB

CCDB Server
CUDA-GDB

CCDB Server

Compute
Node

CCDB Client

Pure MPI MPI/OpenMP MPI/
OpenACC UPC

Candidate Applications:

Reference Suspect

Hash
Signatures

P2P Comparison Hash-based
Comparison

MRNet

Hash
Signature

Compare cmd Dataflow graph

Comparative assertion

•  Scalable
broadcasts and
reductions

•  Switchable
backends

•  Result aggregation

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

CCDB Client

*The architecture of CCDB is illustrated using the Hash-based comparison.

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

CCDB Client

*The architecture of CCDB is illustrated using the Hash-based comparison.

blockmap1 blockmap2

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

CCDB Client

*The architecture of CCDB is illustrated using the Hash-based comparison.

blockmap1 blockmap2

Overlapped Partition Overlapped Partition

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

blockmap1 blockmap2

CCDB Client

*The architecture of CCDB is illustrated using the Hash-based comparison.

Overlapped Partition Overlapped Partition

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

blockmap1 blockmap2

CCDB Client

Hash Signatures

blockmapping

*The architecture of CCDB is illustrated using the Hash-based comparison.

Overlapped Partition Overlapped Partition

CCDB Architecture

MRNet Tree1 MRNet Tree2

CPU GPU
MRNet Communication Process BCB

Application1 Application2

Ghost Cells

GDB

CCDB Server

Compute Node
GDB

CCDB Server

Compute Node Compute Node
CUDA-GDB

CCDB Server

CUDA-GDB

CCDB Server

Compute Node

blockmap1 blockmap2

CCDB Client

Hash Signatures

Compare
blockmapping

*The architecture of CCDB is illustrated using the Hash-based comparison.

Overlapped Partition Overlapped Partition

HETEROGENEITY AND
IMPLEMENTATION TECHNIQUES

Assertion Engine

32

•  Application processes run asynchronously
•  Multiple assertions, can share same line numbers or

variables
•  Assertions specify breakpoint locations in processes

–  multiple breakpoints reached at any time
–  need to read data from process at breakpoint

•  Comparison process is automated
•  Stop execution when threshold reached

⇒ DATAFLOW

Dataflow Engine

33

•  Supports asynchronous
behavior in debugged
processes

•  Flexible assertion structure
–  Single program assertions
–  Cross coupled assertions
–  Multi-process parallel

programs
assert R($ref::large)@trusted.c:65 = S($sus::super)@ported.c:68

$ref

breakpoint
<trusted.c:65>

continue

catch breakpoint

read <large>

Blockmap(R)

$sus

breakpoint
<ported.c:68>

continue

read <super>

Blockmap(S)

compare

34

•  Ability to represent data from different architectures in
an architecture neutral way

•  Need to perform numerical operations on data in this
format

•  Need to be able to convert to/from native formats

Architecture Independent
Format

struct {
 int a;
 float b[3];
};

{a:is4,b:[r0..2is4]f4}

byte 1 byte 2 byte 3 byte 4

s exponent mantissa

s exponent mantissa

s exponent mantissa

Flexibility in Comparisons
•  Tolerances used for inexact equality
•  Data structures should be:

–  type conformant (with conversion)
–  same size, but can be differing shapes

•  Arrays
–  Differences allowed are:

•  offset ranges in arrays
•  ordering of indexes
•  Number of indexes
•  Language

•  Dynamic data
–  Linked lists
–  Objects

35

Programming Languages other than C/F

•  OpenACC/OpenMP
–  Sequential regions executed on CPU
–  Parallel regions offloaded to GPU
–  Data dynamically moves between CPU and GPU
–  Separated address spaces for CPU and GPU codes
–  Inconsistent precision of floating numbers across

CPU and GPU
•  UPC: a virtual global memory space

–  Automatically decomposing the global data across a number of
SPMD threads

–  Exchanging data between threads is managed by the UPC
runtime system

Implementation
•  Modification of CUDA-GDB

–  Automatically identify the variables residing on the GPU
device attached to a Cray system

–  Move the data of a targeted GPU variable into the
memory space of CUDA-GDB (in the memory of the host)

•  This enhancement is implemented using the debugger API
provided by NVIDIA for GDB

•  Tolerance threshold for comparing floating numbers
–  Truncate floating numbers to the same precision before

they are converted into AIF.

The CCDB server on a hybrid node

Supporting UPC
•  Affinity in UPC

– Describes different domain decompositions
– A user can provide a blocking-factor to achieve

different decomposition schemas
•  Implementation

– Retrieve affinity metadata
– Automatically generating a blockmap function,

called auto-blockmap
– Reconstruct a UPC global-shared array using the

auto-blockmap function

CCDB on Cray supercomputers
•  Supporting Cray XE, XK, and XC supercomputers
•  CCDB client: a comparative debugging interface

–  Launching parallel applications onto the back-end
–  Controlling the execution of the programs remotely
–  Compare key data structures between different applications

•  CCDB server: a pluggable architecture
–  GDB: C, Fortran, and UPC programs
–  CUDA-GDB: OpenACC, OpenMP
–  MRNet
–  Scalable communication between the CCDB client and servers
–  AIF(Architecture Independent Format)
–  ‘Normalizing’ the data across platforms and languages

TO INFINITY AND BEYOND?

41

•  Probably big!
•  Heterogeneous
•  Mixed precision
•  Hierarchical memories
•  Algorithms

– Loose synchronization
– Fault tolerant

42

Exascale

43

 Debugging and Correctness

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE

Scaling Debugging Techniques
Debugging Hybrid and Heterogeneous
Architectures
Specialized Memory Systems
Domain Specific Languages
Mixed Precision Arithmetic
Adaptive Systems
Correctness Tools

44

 Debugging and Correctness

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE

Scaling Debugging Techniques ✔
Debugging Hybrid and Heterogeneous
Architectures

✔

Specialized Memory Systems ✔
Domain Specific Languages ✔
Mixed Precision Arithmetic ✔
Adaptive Systems ?
Correctness Tools ?

✔ means some progress

Statistical Assertions

•  Asserting descriptive statistics of a given dataset
–  Mean, standard deviation …

•  Asserting statistical hypotheses
–  Distribution functions
–  Statistical tests

•  Adjacent time steps show high data correlation
–  Can help identifying potential errors and outliers

•  Asserting program states across time steps

45

history etot $a::dvalue@“thermo.cpp”:1521 10 100

set reduce stdev; compare etot < 0.1

Statistical Assertions

•  Statistical parameters (mean, SD, etc)
•  Statistical tests (T, χ2, etc)
•  Distributions

Many high speed particles

Speed histogram for incorrect
code

Speed histogram for correct
code

46

Conclusion

•  Comparative Debugging
– Focuses on errors during code and platform

evolution
•  Very rapid convergence

– Large machines and programs are
challenging

– Techniques that scale to hundreds of
thousands of cores

– Commercial release from Cray

