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AN AFTER DINNER TALK 
ABOUT DEBUGGING? 

Are you serious??? 
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“Windows on the Universe?” 
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Purely Academic 

david.abramson@uq.edu.au 5 



BUGS AND DINNER DON’T 
REALLY MIX 

6 



7 



Thenus orientalis  

•  The United Nations' Food and Agriculture 
Organization prefers the name flathead 
lobster, while the official Australian name 
is Bay lobster.  
–  In Australia, it is more widely known as the 

Moreton Bay bug after Moreton Bay, near 
Brisbane, Queensland. 
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How do you catch these bugs? 
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State of the art in debugging? 

printf(“%f %f %f\n”, a[i], b[i], c[i]) 
a.out 
 
 
 
 
 
a.out > dumpfile; b.out > dumpfile1 
diff dumpfile1 dumpfile2 10 



Debugging large codes 
•  Cognitive challenge 

–  Large number of processes 
•  Particular problems for UI 

–  Large data structures 
•  Infeasible to examine individual cells of 

multi-dimensional, floating  
point, structures.  

–  Heterogeneity 
•  A great source of errors 
•  Hard to debug when do fail 

•  Performance Challenge 
–  High level debugging is expensive 
–  Debuggers generally don't use 

underlying parallel platform 

•  In the Exascale this just gets worse! 11 



COMPARATIVE DEBUGGING 
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Debugging Evolved Applications 
•  Large codes are constantly evolving   

– User requirements 
– Underlying algorithms 
– New architectures 

•  Subtle errors occur often 
– Programmers spend lots of time debugging 
–  Identify the source of a discrepancy 
– Follow it back to original source of deviation 
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Comparative Debugging 
•  What is comparative debugging? 

–  Data centric approach 
–  Two applications, same data 
–  Key idea: The data should match 
–  Quickly isolate deviating variables 
–  Focus is on where deviations occur 

•  How does this help me? 
–  Algorithm re-writes 
–  Language ports 
–  Different libraries/compilers 
–  New architectures 
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Comparative Debugging 
•  Specify conditions for correct behavior prior to 

execution 
•  Debugger:  

–  keeps track of breakpoints  
–  performs comparison automatically 

•  Control returned to user: 
–  examination of state 
–  continuation of execution  

assert P1::big[100..199]@”file.c”:240 = P2::small@”prog.f”:300 
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Why this works? 

•  Iterative refinement of problem area 
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Why this works? 

•  Iterative refinement of problem area 
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Why this works? 

•  Iterative refinement of problem area 
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Why this works? 

•  Iterative refinement of problem area 
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VISUALIZATION 
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Reporting Differences 

Starting execution of processes 
Comparing c and c. 
Maximum difference between values: 1.15442e-23 
Total difference between values: 4.37116e-23 
Number of differences detected = 823 
First 10 errors are:  
At Index : ( 30) = (Diff, Value 1, Value2) 0.000488 
At Index : ( 32) ( 32) = (Diff, Value 1, Value2) 0. 

Values of scalars, small arrays 

2-D pixel maps 

Multi-dimensional 
visualisation 

 

Movies 
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The power of visualization 
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•  Difference in physics of planetary boundary layer 
–  Computation of #steps suited to parallel execution 
–  Evident in 3 dimensional visualisation 

•  Error in radiation  
time step computation 

•  More complete physics 
in long wave radiation LWRAD 

HIRPBL 

The power of visualization 

23 



The power of visualization 

- = 
24 



SCALABILITY 
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Point to Point protocol 
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HETEROGENEITY 
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•  Ability to represent data from different architectures in 
an architecture neutral way 

•  Need to perform numerical operations on data in this 
format 

•  Need to be able to convert to/from native formats 

Architecture Independent 
Format 

struct { 
  int a; 
  float b[3]; 
}; 

{a:is4,b:[r0..2is4]f4} 

byte 1 byte 2 byte 3 byte 4 

s exponent mantissa 

s exponent mantissa 

s exponent mantissa 



Flexibility in Comparisons 
•  Tolerances used for inexact equality 
•  Data structures should be: 

–  type conformant (with conversion) 
–  same size, but can be differing shapes 

•  Arrays 
–  Differences allowed are: 

•  offset ranges in arrays  
•  ordering of indexes 
•  Number of indexes 
•  Language 

•  Dynamic data 
–  Linked lists 
–  Objects 
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Programming Languages other than C/F 

•  OpenACC/OpenMP 
–  Sequential regions executed on CPU 
–  Parallel regions offloaded to GPU 
–  Data dynamically moves between CPU and GPU 
–  Separated address spaces for CPU and GPU codes 
–  Inconsistent precision of floating numbers across 

CPU and GPU 
•  UPC: a virtual global memory space 

–  Automatically decomposing the global data across a number of 
SPMD threads 

–  Exchanging data between threads is managed by the UPC 
runtime system 



WITHOUT A REFERENCE 
CODE? 
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Statistical Assertions 

•  Asserting descriptive statistics of a given dataset 
–  Mean, standard deviation … 

•  Asserting statistical hypotheses 
–  Distribution functions 
–  Statistical tests 

•  Adjacent time steps show high data correlation 
–  Can help identifying potential errors and outliers 

•  Asserting program states across time steps 
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history etot $a::dvalue@“thermo.cpp”:1521 10 100 

set reduce stdev; compare etot < 0.1 
 



Statistical Assertions 

•  Statistical parameters (mean, SD, etc) 
•  Statistical tests (T, χ2, etc) 
•  Distributions 

Many high speed particles  

Speed histogram for incorrect 
code 

Speed histogram for correct 
code 
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STATUS AND 
IMPLEMENTATION 
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CCDB on Cray supercomputers 
•  Supporting Cray XE, XK, and XC supercomputers 
•  CCDB client: a comparative debugging interface  

–  Launching parallel applications onto the back-end 
–  Controlling the execution of the programs remotely 
–  Compare key data structures between different applications  

•  CCDB server: a pluggable architecture 
–  GDB: C, Fortran, and UPC programs 
–  CUDA-GDB: OpenACC, OpenMP 
–  MRNet 
–  Scalable communication between the CCDB client and servers 
–  AIF(Architecture Independent Format) 
–  ‘Normalizing’ the data across platforms and languages 



TO INFINITY AND BEYOND? 
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•  Probably big! 
•  Heterogeneous 
•  Mixed precision 
•  Hierarchical memories 
•  Algorithms 

– Loose synchronization 
– Fault tolerant 
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Exascale 
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 Debugging and Correctness 

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE  
 

Scaling Debugging Techniques  
Debugging Hybrid and Heterogeneous 
Architectures  
Specialized Memory Systems  
Domain Specific Languages  
Mixed Precision Arithmetic 
Adaptive Systems  
Correctness Tools  
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 Debugging and Correctness 

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE  
 

Scaling Debugging Techniques  ✔ 
Debugging Hybrid and Heterogeneous 
Architectures  

✔ 

Specialized Memory Systems  ✔ 
Domain Specific Languages  ✔ 
Mixed Precision Arithmetic ✔ 
Adaptive Systems  ? 
Correctness Tools  ? 

✔ means some progress 



Onto Dessert … 
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