
David Abramson

Research Computing Centre,
University of Queensland,

Brisbane
Australia

1

Data centric debugging:
Scaling to infinity and beyond

Minh Dinh (UQ)
Chao Jin (UQ)

Luiz DeRose (Cray)
Bob Moench (Cray)
Andrew Gontarek (Cray)

AN AFTER DINNER TALK
ABOUT DEBUGGING?

Are you serious???

2

3

“Windows on the Universe?”

4

Purely Academic

david.abramson@uq.edu.au 5

BUGS AND DINNER DON’T
REALLY MIX

6

7

Thenus orientalis

•  The United Nations' Food and Agriculture
Organization prefers the name flathead
lobster, while the official Australian name
is Bay lobster.
–  In Australia, it is more widely known as the

Moreton Bay bug after Moreton Bay, near
Brisbane, Queensland.

8

How do you catch these bugs?

9

State of the art in debugging?

printf(“%f %f %f\n”, a[i], b[i], c[i])
a.out

a.out > dumpfile; b.out > dumpfile1
diff dumpfile1 dumpfile2 10

Debugging large codes
•  Cognitive challenge

–  Large number of processes
•  Particular problems for UI

–  Large data structures
•  Infeasible to examine individual cells of

multi-dimensional, floating
point, structures.

–  Heterogeneity
•  A great source of errors
•  Hard to debug when do fail

•  Performance Challenge
–  High level debugging is expensive
–  Debuggers generally don't use

underlying parallel platform

•  In the Exascale this just gets worse! 11

COMPARATIVE DEBUGGING

12

Debugging Evolved Applications
•  Large codes are constantly evolving

– User requirements
– Underlying algorithms
– New architectures

•  Subtle errors occur often
– Programmers spend lots of time debugging
–  Identify the source of a discrepancy
– Follow it back to original source of deviation

13

Comparative Debugging
•  What is comparative debugging?

–  Data centric approach
–  Two applications, same data
–  Key idea: The data should match
–  Quickly isolate deviating variables
–  Focus is on where deviations occur

•  How does this help me?
–  Algorithm re-writes
–  Language ports
–  Different libraries/compilers
–  New architectures

14

Comparative Debugging
•  Specify conditions for correct behavior prior to

execution
•  Debugger:

–  keeps track of breakpoints
–  performs comparison automatically

•  Control returned to user:
–  examination of state
–  continuation of execution

assert P1::big[100..199]@”file.c”:240 = P2::small@”prog.f”:300

15

Why this works?

•  Iterative refinement of problem area

16

Why this works?

•  Iterative refinement of problem area

17

Why this works?

•  Iterative refinement of problem area

18

Why this works?

•  Iterative refinement of problem area

19

VISUALIZATION

20

Reporting Differences

Starting execution of processes
Comparing c and c.
Maximum difference between values: 1.15442e-23
Total difference between values: 4.37116e-23
Number of differences detected = 823
First 10 errors are:
At Index : (30) = (Diff, Value 1, Value2) 0.000488
At Index : (32) (32) = (Diff, Value 1, Value2) 0.

Values of scalars, small arrays

2-D pixel maps

Multi-dimensional
visualisation

Movies

21

The power of visualization

22

•  Difference in physics of planetary boundary layer
–  Computation of #steps suited to parallel execution
–  Evident in 3 dimensional visualisation

•  Error in radiation
time step computation

•  More complete physics
in long wave radiation LWRAD

HIRPBL

The power of visualization

23

The power of visualization

- =
24

SCALABILITY

25

Head node

Interconnection Network

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

Data Data Data Data

Reference Data

?

Data Data Data Data

Suspect Data

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

Copied

Combined

Compared

Compute
Node

Original Design

26

Debug
Server

Debug
client

Debug
Server

Debug
Server

Debug
Server

Debug
Server

Debug
Server

?

Reference Signature Array Suspect Signature Array

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Multi
signatures

Sub-
structure

Sub-
structure

Sub-
structure

Multi
signatures

Multi
signatures

Multi
signatures

Sub-
structure

Sub-
structure

Sub-
structure

Multi
signatures

Multi
signatures

Multi
signatures

Hash Hash Hash Hash Hash Hash

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Multi-block
Segmentation

Network
Insfractructure

27

Point to Point protocol

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

?

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Debug
Server

Applic
ation

Data

Debug
Server

Applic
ation

Data

?

Head node

Interconnection Network

28

HETEROGENEITY

30

•  Ability to represent data from different architectures in
an architecture neutral way

•  Need to perform numerical operations on data in this
format

•  Need to be able to convert to/from native formats

Architecture Independent
Format

struct {
 int a;
 float b[3];
};

{a:is4,b:[r0..2is4]f4}

byte 1 byte 2 byte 3 byte 4

s exponent mantissa

s exponent mantissa

s exponent mantissa

Flexibility in Comparisons
•  Tolerances used for inexact equality
•  Data structures should be:

–  type conformant (with conversion)
–  same size, but can be differing shapes

•  Arrays
–  Differences allowed are:

•  offset ranges in arrays
•  ordering of indexes
•  Number of indexes
•  Language

•  Dynamic data
–  Linked lists
–  Objects

31

Programming Languages other than C/F

•  OpenACC/OpenMP
–  Sequential regions executed on CPU
–  Parallel regions offloaded to GPU
–  Data dynamically moves between CPU and GPU
–  Separated address spaces for CPU and GPU codes
–  Inconsistent precision of floating numbers across

CPU and GPU
•  UPC: a virtual global memory space

–  Automatically decomposing the global data across a number of
SPMD threads

–  Exchanging data between threads is managed by the UPC
runtime system

WITHOUT A REFERENCE
CODE?

33

Statistical Assertions

•  Asserting descriptive statistics of a given dataset
–  Mean, standard deviation …

•  Asserting statistical hypotheses
–  Distribution functions
–  Statistical tests

•  Adjacent time steps show high data correlation
–  Can help identifying potential errors and outliers

•  Asserting program states across time steps

34

history etot $a::dvalue@“thermo.cpp”:1521 10 100

set reduce stdev; compare etot < 0.1

Statistical Assertions

•  Statistical parameters (mean, SD, etc)
•  Statistical tests (T, χ2, etc)
•  Distributions

Many high speed particles

Speed histogram for incorrect
code

Speed histogram for correct
code

35

STATUS AND
IMPLEMENTATION

36

CCDB on Cray supercomputers
•  Supporting Cray XE, XK, and XC supercomputers
•  CCDB client: a comparative debugging interface

–  Launching parallel applications onto the back-end
–  Controlling the execution of the programs remotely
–  Compare key data structures between different applications

•  CCDB server: a pluggable architecture
–  GDB: C, Fortran, and UPC programs
–  CUDA-GDB: OpenACC, OpenMP
–  MRNet
–  Scalable communication between the CCDB client and servers
–  AIF(Architecture Independent Format)
–  ‘Normalizing’ the data across platforms and languages

TO INFINITY AND BEYOND?

38

•  Probably big!
•  Heterogeneous
•  Mixed precision
•  Hierarchical memories
•  Algorithms

– Loose synchronization
– Fault tolerant

39

Exascale

40

 Debugging and Correctness

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE

Scaling Debugging Techniques
Debugging Hybrid and Heterogeneous
Architectures
Specialized Memory Systems
Domain Specific Languages
Mixed Precision Arithmetic
Adaptive Systems
Correctness Tools

41

 Debugging and Correctness

ASCR Tools Challenges for Exascale Computing, October 13 – 14, 2011, DOE

Scaling Debugging Techniques ✔
Debugging Hybrid and Heterogeneous
Architectures

✔

Specialized Memory Systems ✔
Domain Specific Languages ✔
Mixed Precision Arithmetic ✔
Adaptive Systems ?
Correctness Tools ?

✔ means some progress

Onto Dessert …

42

