

Director, Research Computing Centre
Professor of Computer Science
University of Queensland

With recent help from Hoang Nguyen, Timos Kipouros, Zane Van Iperen

Introduction

- Some Engineering Optimization Problems
- The Nimrod tool family
- Scientific Workflows
- Execution Engines
 - Clusters & Grids & Clouds
- Interacting with designs
- Conclusions

Some Engineering Optimization Problems

Air pollution Cope, Victorian EPA (in 1990)

Wildfires

Lynch, Beringer, Uotila Monash U, AU

Aerofoil Design

Kipouros, Cambridge, UK

- Geometry management using Free Form Deformation 8 design variables
- Evaluation of the aerodynamic characteristics, Cl, Cd, and Cm coefficients using Xfoil

 Investigation of the lift to drag trade-off subject to hard geometrical constraints to the thickness of the airfoil at 25% and 50% of the chord (in order to maintain practical

significance to the design problem)

Cardiac Science

Sher, Gavaghan, Rodriguez, Oxford Mcculloch, Mihaylova, Kerckhoffs, UCSD

- Heart disease still leading cause of death
- Understanding the underlying physiological mechanisms is cheaper and faster when experimental studies are performed together with mathematical models & computer simulations
- Studying pathologies
- Developing & Testing drugs

Micromixer optimization

Kipouros, Cambridge, UK

- Microfluidics
 - 10⁻⁹ to 10⁻¹⁸ litres amounts of fluids
 - Gaining importance in various fields

Micromixer deals with mixing fluids in the

smallest scale

Active vs. passive

Electro-chemistry

Bond, Gavaghan: Monash, Oxford

The Nimrod Tools Family

Nimrod supporting "real" science

- A full parameter sweep is the cross product of all the parameters (Nimrod/G)
- An optimization run minimizes some output metric and returns parameter combinations that do this (Nimrod/O)
- Design of experiments limits number of combinations (Nimrod/ E)
- Workflows (Nimrod/K)

Nimrod Development Cycle

Prepare Jobs using Portal

Sent to available machines

Results displayed & interpreted

Scientific Workflows and Nimrod

Nimrod/K Workflows

- Nimrod/K integrates Kepler with
 - Massively parallel execution mechanism
 - Special purpose function of Nimrod/G/O/E
 - General purpose workflows from Kepler

Workflow Threading

- Nimrod parameter combinations can be viewed as threads
- Multi-threaded workflows allow independent sequences in a workflow to run concurrently
 - This might be the whole workflow, or part of the workflow
- Tokens in different threads do not interact with each other in the workflow

Complete Parameter Sweep

- Using a MATLAB actor provided by Kepler
- Local spawn
 - Multiple thread ran concurrently on a computer with 8 cores (2 x quads)
 - Workflow execution was just under 8 times faster
- Remote Spawn
 - 100's 1000's of remote processes

Nimrod/EK Actors

- Actors for generating and analyzing designs
- Leverage concurrent infrastructure

Optimization with Nimrod/OK

Nimrod/OK Workflows

- Nimrod/K supports parallel execution
- General template for search
 - Built from key components
- Can mix and match optimization algorithms

Using different optimisers

Hybrid Optimization

Execution Engines

Nimrod over Clusters

AXCELEON

JIGH-PERFORMACE DISTRIBUTED CONTROL SUPPORT NEWS CONTACT

PROBLEM OF THE PRODUCTS SOLUTIONS PARTNERS DOWNLOADS SUPPORT NEWS CONTACT

Output

Jobs / Nimrod experiment

Nimrod

Actuator, e.g., SGE, PBS, LSF, Condor

Local Batch System

Nimrod over Grids

- Advantages
 - Wide area elastic computing

- Portal based point-of-presence independent of location of computational resources
- Grid level security
- Computational economy proposed
 - New scheduling and data challenges
- Virtualization proposed (Based on .NET!)
- Leveraged Grid middleware
 - Globus, Legion, ad-hoc standards

Leveraging Cloud Infrastructure

- Centralisation is easier
 - (Clusters vs Grid)
- Virtualisation improves interoperability and scalability
 - Build once, run everywhere
- Computational economy, for real
 - Deadline driven
 - "I need this finished by Monday morning!"
 - Budget driven
 - "Here's my credit card, do this as quickly and cheaply as possible."
- Cloud bursting
 - Scale-out to supplement locally and nationally available resources

Nimrod's Grid Economy is Cloud bursting

Resource	#jobs completed	Total job time (h:m:s)	μ / σ Job runtime (mins)
East	818	1245:37:23	91/5.7
EC2	613	683:34:05	67/14.2

Workways

Interacting with Workflows

WorkWays

- Ease of use of Science Gateway
- Workflows as service
- IO through portlets
- Extensibility
 - Different IO mechanisms, protocols and topolgy
 - Different UI clients
- Currently Kepler as the workflow engine

Motivation

- Support human-in-the-loop workflows
 - Ability to perform IO operations with a continuously running workflow
- Benefits
 - Insights into workflow execution
 - Steer the execution

WorkWays

- Leverage various existing technologies
 - Kepler workflow
 - Nimrod family toolkit
 - Liferay portal
- Virtual desktops
- AAF
- Various Web-based visualization tools
 - Parallel coordinates
 - Para-view Web

IOActor

- Generic actor
 - Simplify the creation of (new) IO actors
 - Instantiate an IOActor & provide the actor definition
- IOActor definition
 - Actor name
 - Number of (supported)clients
 - Operation: input/output/inout
 - Additional information

```
{
    actor: "ImageInOutActor"
    {
        operation: "inout"
        input_type: "text"
        prompt: "Choose an area in the image"
        output_type: "binary"
        display_type: "image"
        action: "subarea"
        wait_client: true
        wait_for_input: true
}
```

IOPortlet

- Web UI client
- Vaadin framework
 - framework for building rich Web applications
- JSR-286 portlet
 - UI elements generated based on requests from connected IOActor
 - Limited UI elements

Examples

Micro-mixer design

Optimal Topology

Parallel Coordinates

Micromixer Optimization

Micromixer optimization Workflow

Airfoil Design

2D airfoil optimization

2D airfoil optimization

Conclusions

- Workflows are useful for scripting complex computational science and engineering problems
- Conceptually easy to add optimization
- User interaction requires new workflow actors
- Integration to a Science Gateway allows very powerful workflows to be exposed to wider communities.