
The University of Queensland

Research Computing Centre

Installation of Additional Capability into R/Perl/Python

Installation of Additional Capability into R/Perl/Python

Document Status

Personal R Libraries

Prepare a location to install your packages.

Search First, Build Second

Option 1: Install packages the Rstudio way

Option 2: Install packages from the interactive R prompt

Compilation Woes

Precompiled R packages

Missing a Compiler, anybody?

Missing operating system packages

Missing R packages

Ensuring you have access to the include files and libraries

Some Notes about Geospatial Packages

The rgdal Package

The sf Package

Some notes about bio-related packages

monocle 3

The R Packages HOWTO Module

Personal Perl Packages

Personal Python Modules

Python distutils

Using pip

Example of Using pip (IsoCon)

Footnote: R Versions on HPC

ROCKS R

/sw R

Singularity R

Document Status

Last updated on July 13 2020 by David.Green@uq.edu.au

The scripting languages R, Perl and Python are supported by a plethora of libraries/packages/modules from their open source

communities.

The RCC cannot, and will not, install every interesting package. (Sorry about that!)

We keep the central language installations fairly clean and enhance their functionality in three ways:

1. add system packages that provide required functionalities (for example, the perl-JSON system package is installed)

2. build a core set of highly regarded packages (for example the contents of /opt/R/local/lib/ contains 248 R libraries)

3. supporting the use of personal libraries/packages/modules (which is the subject of this user guide)

Personal R Libraries

The process of installing R libraries can be done from inside the R language. However, there are a couple of steps that need to be

followed first.

Prepare a location to install your packages.

The standard package install locations require administration privileges to add new packages.

Therefore, you need to use a location that you are permitted to write into when you need to build packages.

You can either

• let R choose a standard location for you

• create your own location and configure your R sessions to use it.

Both approaches have merit.

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

1 of 11 21/6/22, 14:02

http://www.uq.edu.au/
http://www.uq.edu.au/
http://www.rcc.uq.edu.au/
http://www.rcc.uq.edu.au/
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Installation-of-Additional-Capability-into-RPerlPython
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Installation-of-Additional-Capability-into-RPerlPython
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Document-Status
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Document-Status
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-R-Libraries
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-R-Libraries
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Prepare-a-location-to-install-your-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Prepare-a-location-to-install-your-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Search-First-Build-Second
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Search-First-Build-Second
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Option-1-Install-packages-the-Rstudio-way
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Option-1-Install-packages-the-Rstudio-way
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Option-2-Install-packages-from-the-interactive-R-prompt
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Option-2-Install-packages-from-the-interactive-R-prompt
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Compilation-Woes
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Compilation-Woes
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Precompiled-R-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Precompiled-R-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-a-Compiler-anybody
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-a-Compiler-anybody
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-operating-system-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-operating-system-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-R-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Missing-R-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Ensuring-you-have-access-to-the-include-files-and-libraries
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Ensuring-you-have-access-to-the-include-files-and-libraries
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Some-Notes-about-Geospatial-Packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Some-Notes-about-Geospatial-Packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-rgdal-Package
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-rgdal-Package
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-sf-Package
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-sf-Package
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Some-notes-about-bio-related-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Some-notes-about-bio-related-packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#monocle-3
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#monocle-3
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-R-Packages-HOWTO-Module
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#The-R-Packages-HOWTO-Module
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-Perl-Packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-Perl-Packages
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-Python-Modules
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Personal-Python-Modules
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Python-distutils
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Python-distutils
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Using-pip
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Using-pip
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Example-of-Using-pip-IsoCon
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Example-of-Using-pip-IsoCon
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Footnote-R-Versions-on-HPC
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Footnote-R-Versions-on-HPC
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#ROCKS-R
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#ROCKS-R
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#sw-R
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#sw-R
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Singularity-R
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html#Singularity-R
mailto:David.Green@uq.edu.au
mailto:David.Green@uq.edu.au

Recent versions of R use a standard location that includes information about the system architecture:

${HOME}/R/x86_64-pc-linux-gnu-library/3.4 ...

${HOME}/R/x86_64-pc-linux-gnu-library/3.5 ...

${HOME}/R/x86_64-pc-linux-gnu-library/3.6 ...

${HOME}/R/x86_64-pc-linux-gnu-library/4.0 ...

This is where R will install your personal packages unless you take steps to the contrary.

You should not require all the .Rprofile settings that are mentioned in the Using R user guide.

This is advantageous if you use different versions of R that are always on "bare metal" (that is R versions installed in /opt and

some in /sw).

However, using standard locations may present difficulties if you switch between bare metal and versions of R that are provided

using software containers R (e.g. the RStudio and RJAGS containers.)

The R software provided in software containers is usually configured to use GNU compilers that are within the container.

Mixing of R packages that are built inside and outside software containers is not recommended.

Having a distinct location that you can use as required gives you much more flexibility and control, however you need to careful to

ensure that you get the right versions of packages each time.

Using the .Rprofile and .libPaths() is one way to ensure you get the correct libraries loaded each time.

In this guide we will assume the directory .R/library (but you could equally use some project specific location).

You may wish to use this approach to separate R packages built for/by software containers, from those built for/by the centrally

installed R.

To create your own R installation location you would make the directory:

user@awoonga1:~> mkdir -p ~/.R/library

The -p creates the parent directories if they do not exist.

Now that you have a location for installing packages, you need to let R know about it. This is done by appending the path to the

libPaths. While this can be typed into the R interpreter every time start R, adding this to the ~/.Rprofile will mean that it is done

every time you start R.

user@awoonga1:~> echo '.libPaths(c("~/.R/library", .libPaths()))' >> ~/.Rprofile

A cat of your .Rprofile should now contain at least the following line.

user@awoonga1:~> cat ~/.Rprofile

.libPaths(c("~/.R/library", .libPaths()))

Search First, Build Second

More competent R users than me will know how to do this within R itself.

Before you launch into (re-)building R packages and dependencies, you should check they don't already exist in your .libPaths().

I find this sort of search using the find command works for me.

module load R

echo $R_LIBS

find $R_LIBS $HOME/R/ -type d -name NAME_OF_R_PACKAGE

e.g.

uqdgree5@flashlite1:.../Clients> module list

Currently Loaded Modules:

 1) intel/2018.2.046 2) R/3.5.0

uqdgree5@flashlite1:.../Clients> find $R_LIBS $HOME/R/ -type d -name data.table

/opt/R/local/lib/data.table

uqdgree5@flashlite1:.../Clients/uqrdomin/scenarios_q1> find $R_LIBS $HOME/R/ -type d -name spatstat

/home/uqdgree5/R/x86_64-pc-linux-intel-library/3.5/spatstat

Option 1: Install packages the Rstudio way

RStudio (http://www.rstudio.com/) Version 1.0.143 has been deployed on HPC as a software container. The container includes

GCC build tools and a specific R version 3.4.0. It can not be used with other versions of R, nor probably any packages built with

bare metal versions of R on the system. As with other software modules, an up to date list of which versions of Rstudio can be

queried using

user@awoonga1:~> module avail rstudio

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

2 of 11 21/6/22, 14:02

http://www.rstudio.com/
http://www.rstudio.com/

Using Rstudio requires X11 forwarding. Assuming that X11 forwarding has been correctly setup, Rstudio can be used by:

user@awoonga1:~> module load rstudio

user@awoonga1:~> rstudio

This will load the default version of RStudio container. The rstudio module will automatically load the associated version of R and

will create an alias that will launch RStudio.

Once RStudio starts, select a CRAN mirror by going to tools > options > Packages and change the CRAN mirror. The Australia

(Melbourne) mirror is recommended as it is on AARNet.

Packages can be installed via the "install packages" button under the packages tab.

Clicking on install packages will bring up a dialog. Ensure that "Install to library" is set to the ~/.R/library directory. If the directory

was correctly added to .libPaths, then it will be listed in the drop down menu.

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

3 of 11 21/6/22, 14:02

Add the list of packages and click install. Rstudio will then download and install each package.

Option 2: Install packages from the interactive R prompt

The process for installing R packages from the interactive R prompt is fairly straightforward. X11 forwarding is helpful but not

required.

1. Get an R prompt

user@awoonga1:~> module load R

user@awoonga1:~> R

>

2. Choose a CRAN mirror

> chooseCRANmirror()

If X11 forwarding is enabled, a window will pop up that lets you select which mirror to use, otherwise, a list of mirrors with a

numerical value can be selected from a prompt. It's recommended that the Australia (Melbourne) mirror is used as it is on

AARNet.

3. Install packages

> install.packages(c("pkg1", "pkg2"))

If you want to install a package and all of its dependencies, use

> install.packages("Rcmdr", dependencies = TRUE)

Compilation Woes

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

4 of 11 21/6/22, 14:02

Sometimes you can struggle with getting libraries built.

Precompiled R packages

Sometimes an R library package is distributed as a pre-compiled package directory that is "ready-to-use" - and no compilation is

required!

It just needs to be placed in the correct location for the version of R that you are using.

You do need to ensure that if the package was built using the GNU C compiler GCC (which it almost certainly was), that you only

use it with a GCC build of R.

On the HPC currently module load R/3.5.0-gnu or a container versions of R were built using GCC.

Missing a Compiler, anybody?

Some packages are intended to be built with a particular version of a compiler so that newer software features can be utilised by

the software.

If you see a message like this

configure: error: "No C++14 compiler identified by R CMD config CXX14"

then your library build script is unable to locate a suitable compiler (in this case one that supports the C++ V14 standard).

The fix can be as simple as helping the R build mechanim to find the appropriate compiler by customising your R makevars

echo "CXX14=icc" >> ~/.R/Makevars

So in this case, we tricked R into using the Intel icc compiler which is C++ V14 compliant.

Similar customisation of Makevars can be useful to ensure you are picking up the non-standard locations for INCLUDEPATH and

the like.

Missing operating system packages

Building R packages from source can sometimes fail because the build mechanism expects to have access to components of what

are referred to as "dev packages" for the operating system.

The symptoms are often messages in the "configure" stage saying that such and such was not found.

In that case the sensible way forward is to have the operating system packages installed into the HPC, or, for a software container

to be built that contains all the required operating system packages as well as a usable installation of R. Occastionally, RCC has

been able to build a bespoke software container for a specific purpose and project, but this is not often feasible.

You would need to request installation of operating system packages or the creation of a customised R container via email to rcc-

support@uq.edu.au

If we can accommodate it safely in the HPC operating systems we will, otherwise we will have to build a software container built

from a different linux distribution and provide a complete environment for using that R package.

Missing R packages

Building R packages from source can sometimes fail because they expect to have access to other R libraries that are not yet built.

Before you rush to install.packages with the dependencies=TRUE option it is worth checking that your .libPaths() includes the centrally

provided libraries.

The software modules for bare metal installations of R include an environment variable R_LIBS which is the location of additional

libraries that are provided with that module load.

It will save you time effort and filesystem quota, if you are able to use the pre-existing libraries that are provided in the bare metal

installations.

I have experienced situations where dependencies have been built unnecessarily because of the ordering of library paths in the

.libPaths().

A workaround I use is to reverse the order of the entries in the path vector and resave it using .libPaths():

#Need to ugly-fix the library path ...

pp <- .libPaths()

.libPaths(c(pp[3],pp[2],pp[1]))

I recommend that you do not blindly follow this advice and check what .libPaths() you have in the R instance that you using, then

use, modify, or ignore the suggestion as appropriate.

Ensuring you have access to the include files and libraries

If you are building a package for R that depends on other software packages, you may find that the build process fails with a

message such as

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

5 of 11 21/6/22, 14:02

mailto:rcc-support@uq.edu.au
mailto:rcc-support@uq.edu.au
mailto:rcc-support@uq.edu.au
mailto:rcc-support@uq.edu.au

configure: error: proj_api.h not found in standard or given locations.

For example, the RGDAL package depends external packages GDAL and PROJ and will not build without access to the header

files gdal.h and proj_api.h.

These can be provided by module load-ing GDAL and PROJ modules (which amend the INCLUDE and LD_LIBRARY_PATH

variables) before running R to build the package.

user@awoonga1:~> module load gdal

user@awoonga1:~> module load proj

user@awoonga1:~> echo $INCLUDE

/sw/PROJ/4.8.0/include:/sw/GDAL/1.9.1/include

user@awoonga1:~> R

and during the successful build process

.

.

checking gdal.h usability... yes

checking gdal.h presence... yes

checking for gdal.h... yes

checking gdal: linking with --libs only... yes

checking GDAL: /sw/GDAL/1.9.1/share/gdal/pcs.csv readable... yes

checking proj_api.h usability... yes

checking proj_api.h presence... yes

checking for proj_api.h... yes

checking for pj_init_plus in -lproj... yes

configure: PROJ.4 version: 4.8.0

.

.

Some Notes about Geospatial Packages

Some of our HPC users have experienced difficulty building R packages that require operating system components of a geospatial

type (eg . GDAL and PROJ4)

The rgdal Package

The rgdal package is provided as part of the central R installation and should be available once you load the R/3.5.0

module.

You would still need to load the gdal/2.2.0 environment module (and possibly also the proj/4.9.3 environment module) to make use

of it.

If you modify your R environment, or need to build your own version of rgdal, then proceed as follows.

As at November 2019, the following formulation is known to work for building the rgdal package:

uqdgree5@tinaroo1:~> module purge

uqdgree5@tinaroo1:~> module load gdal/2.2.0 proj/4.9.3 R/3.5.0

uqdgree5@tinaroo1:~> export PKG_CONFIG_PATH=/opt/proj/lib/pkgconfig/

uqdgree5@tinaroo1:~> R

R version 3.5.0 (2018-04-23) -- "Joy in Playing"

SNIP

> install.packages("rgdal", dependencies=TRUE, type="source", configure.args=c('--with-gdal-config=/opt/gdal/bin/gdal-config','--with-proj-in

SNIP

** testing if installed package can be loaded

* DONE (rgdal)

The sf Package

After installing rgdal as above, quit R and then

module load ncview geos

export INCLUDE=$INCLUDE:/opt/ncview/include

R

then within R

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

6 of 11 21/6/22, 14:02

install.packages("units", configure.args=c('--with-udunits2-lib=/opt/ncview/lib', '--with-udunits2-include=/opt/ncview/include'))

SNIP

** testing if installed package can be loaded

* DONE (units)

> install.packages("sf")

SNIP

** testing if installed package can be loaded

* DONE (sf)

Some notes about bio-related packages

monocle 3

There is an installation guide so follow it but with the following modifications

Mention is made of issues with rgdal and sf packages, so build them first using the suggestions elsewhere in this User Guide.

In order that you may use the devtools technique to build software into your personal library location, you need to modify the way

you call devtools as follows:

devtools::install_github('cole-trapnell-lab/leidenbase', args = c('--library="/home/uqdgree5/R/x86_64-pc-linux-intel-library

/3.5"'))

devtools::install_github('cole-trapnell-lab/monocle3', args = c('--library="/home/uqdgree5/R/x86_64-pc-linux-intel-library

/3.5"'))

You may also find that devtools is unable to install dependenciesinto your personal R library direcetory.

You may need to ensure that all dependencies are available before issuing the devtools::install_github command.

The R Packages HOWTO Module

A documentation module is available on the HPC to assist you with building packages in a few scenarios.

uqdgree5@tinaroo1:~> module help HOWTO/R-Packages

----------- Module Specific Help for 'HOWTO/R-Packages' -----------

 This HOWTO module attempts to answer the often asked question:

 Where do I build extra packages for R on Tinaroo or FlashLite ?

 The R statistical software provides a mechanism to compile additional packages

 that enhance its functionality.

 Although additional packages can be installed centrally by system administrators,

 it is preferrable that they be installed into a user's personal library.

 R is provided on Euramoo as part of the installed operating system software. Just type R to use it.

 R is provided on Tinaroo and FlashLite via a loadable module.

 This R has been built as a ROCKS "roll" using the intel compilers.

 uqdgree5@tinaroo1:~> module list

 No Modulefiles Currently Loaded.

 uqdgree5@tinaroo1:~> module load R

 uqdgree5@tinaroo1:~> module list

 Currently Loaded Modulefiles:

 1) intel/2016.1.150 2) R/3.2.3

 If you are familiar with using R then you should already know about using personal library paths.

 If not, then please read

 https://cran.r-project.org/doc/manuals/r-release/R-admin.html or

 the RCC User Guide on "Installation of Packages for Scripting Languages like R and Python"

 Often, you would just need to

 module purge

 module load R

 R

 [set the repo to use]

 install.packages("somePackage", dependencies = TRUE)

 Sometimes, you may need to have available other system installed software.

 The R package rgeos depends on GEOS being installed.

 To build rgeos with the cluster version of GEOS, you would

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

7 of 11 21/6/22, 14:02

https://cole-trapnell-lab.github.io/monocle3/docs/installation/
https://cole-trapnell-lab.github.io/monocle3/docs/installation/

 module purge

 module load R

 module load geos

 R

 [set the repo]

 install.packages("rgeos", dependencies = TRUE)

 Sometimes, you may need to feed configure options to the build mechanism.

 The R package Rmpi needs OpenMPI (bin, include and lib files)

 module purge

 module load R/3.2.3

 module load intel/2016.1.150

 module load openmpi_ib/1.8.4

 #the latter is only visible after intel is loaded

 R

 [set the repo]

 install.packages('Rmpi', dependencies = TRUE, type = "source", configure.args = c('--with-mpi=/opt/openmpi/intel/ib'))

 Sometimes, you may need to provide more information about the system installed dependencies.

 For example, rgdal is a R package that depends on PROJ and GDAL packages and

 you may need to help it find all the pieces of the puzzle:

 module purge

 module load R

 module load gdal

 module load proj

 R

 [set the repo]

 install.packages('rgdal', dependencies = TRUE, type = "source", configure.args=c('--with-gdal-config=/opt/gdal/bin/gdal-config','--wi

 In rare circumstances, you may encounter a situation where the build is disallowed with an error like

 package ‘INLA’ is not available (for R version 3.2.3)

 It may be possible to download and build directly from a development repository.

 module purge

 module load R

 R

 install.packages("INLA", repos="http://www.math.ntnu.no/inla/R/stable")

 Some suites of extra R software have their own installer mechanism. Bioconductor is an example.

 The set of default packages can be installed (and updates to dependencies) simply by

 source("http://bioconductor.org/biocLite.R")

 biocLite()

 This installer will be busy for some time downloading and installing packages.

 You will need to answer some questions going through:

 Would you like to use a personal library instead? (y/n) y

 Would you like to create a personal library

 ~/R/x86_64-pc-linux-gnu-library/3.2

 to install packages into? (y/n) y

 A specific component can be installed (without updating other components) using a variation on this mechanism:

 module load R

 R

 source("http://bioconductor.org/biocLite.R")

 biocLite("DESeq", suppressUpdates=TRUE)

 The ENTIRE bioconductor suite can be installed using a variation on this mechanism.

 module load R

 R

 source("http://bioconductor.org/biocLite.R")

 biocLite(all_group(), suppressUpdates=TRUE)

 Warning: This all_group installation will take a VERY long time and will also download a lot of sample data.

Personal Perl Packages

There is a perlmonks discussion item that summarises one of several approaches.

To build a package for use from, and installation into, a personal location called $MYSHARE, (rinceWind) suggests the following:

perl Makefile.PL LIB=$MYSHARE/lib PREFIX=$MYSHARE

make

make test

make install

Note that $MYSHARE is a shell environment variable pointing to a path to which you as installer have write access.

This even means that you can set up modules without needing root or sysadmin rights.

To use said directory, set PERL5LIB to include $MYSHARE in the path. It also makes installation possible to other

nodes without invoking perl (just tar up the directory and distribute it).

I tend to specify both LIB and PREFIX because for the following reasons: LIB is specified so that all .pm and XS code

can be found. PREFIX is specified to provide placeholders for manpages and any other collateral that does not end up

in the LIB. Note: you might get problems between perl versions if you have incompatible XS binaries.

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

8 of 11 21/6/22, 14:02

https://www.perlmonks.org/?node_id=340405
https://www.perlmonks.org/?node_id=340405
https://www.perlmonks.org/?node_id=144850
https://www.perlmonks.org/?node_id=144850

You might consider creating the "$MYSHARE" within your home directory.

Personal Python Modules

Python distutils

Distutils (http://docs.python.org/2/install/index.html) is the standard for Python package distribution. Installing packages using

distutils is a 3 step process.

1. Download the package you want to install from the package website (usually something like <name>-<version>.tar.gz)

2. Extract the package archive and move into that directory (tar -zxf <name>-<version>.tar.gz and then cd <name>-<version>)

3. Execute the python setup script as follows

python setup.py install --user

This will install the package in your user site-packages directory (eg. ~/.local/lib/python2.7/site-packages).

Some things to keep in mind.

• Barrine's system python does not have distutils. To use distutils, you need to load one of the python modules.

• Distutils does not perform dependency resolution.

• Distutils does not provide any update or uninstall mechanisms.

Using pip

Pip is a tool which simplifies the process for installing packages.

It automatically downloads and installs a package and its dependencies just by providing the package name.

By using the --user option to pip you will be permitted to install your python "extras" into $HOME/.local/lib/python2.7/site-

packages

The syntax for installing user packages is:

uqmmallo@b10b10:~> pip install --user <package_name1> <package_name2> ...

Pip also provides an uninstall mechanism.

pip uninstall <package_name1> <package_name2> ...

While file permissions will stop you being able to remove global packages, please take care to only remove packages that you

installed.

Use the --user option to pip to avoid disappointments!

Example of Using pip (IsoCon)

IsoCon is a python package with some dependencies.

We found that it needed to have additional package (wheel) installed as the user to get past an error with the installation of

parasail.

Then things went smoothly through to completion.

Here is a screen scrape of the session:

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> module load python

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> which pip

/opt/python/bin/pip

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> cat requirements.txt

edlib>=1.1.2

pysam>=0.11

networkx>=1.10

parasail>=1.1.10

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> /opt/python/bin/pip2.7 install --user --upgrade pip

Collecting pip

 Using cached pip-9.0.3-py2.py3-none-any.whl

Installing collected packages: pip

Successfully installed pip-9.0.3

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> /home/uqdgree5/.local/bin/pip2.7 install --user wheel

Collecting wheel

 Downloading wheel-0.30.0-py2.py3-none-any.whl (49kB)

 100% |████████████████████████████████| 51kB 2.3MB/s
Installing collected packages: wheel

Successfully installed wheel-0.30.0

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> /home/uqdgree5/.local/bin/pip2.7 install --user parasail

Collecting parasail

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

9 of 11 21/6/22, 14:02

http://docs.python.org/2/install/index.html
http://docs.python.org/2/install/index.html
https://github.com/ksahlin/IsoCon
https://github.com/ksahlin/IsoCon

 Using cached parasail-1.1.11.tar.gz

Requirement already satisfied: numpy in /opt/python/lib/python2.7/site-packages/numpy-1.12.1-py2.7-linux-x86_64.egg (from parasail)

Building wheels for collected packages: parasail

 Running setup.py bdist_wheel for parasail ... done

 Stored in directory: /home/uqdgree5/.cache/pip/wheels/e6/2c/d5/7175fbdcc9a8a1b7759e4bdc2cb8a31332af9a2b78416a12b3

Successfully built parasail

Installing collected packages: parasail

Successfully installed parasail-1.1.11

uqdgree5@awoonga1:.../uqdgree5/Support/uquser> /home/uqdgree5/.local/bin/pip2.7 install --user --requirement requirements.txt IsoCon

Collecting IsoCon

 Using cached IsoCon-0.3.1.tar.gz

Collecting edlib>=1.1.2 (from -r requirements.txt (line 1))

 Using cached edlib-1.2.3.tar.gz

Collecting pysam>=0.11 (from -r requirements.txt (line 2))

 Using cached pysam-0.14.1-cp27-cp27m-manylinux1_x86_64.whl

Collecting networkx>=1.10 (from -r requirements.txt (line 3))

 Using cached networkx-2.1.zip

Requirement already satisfied: parasail>=1.1.10 in /gpfs1/homes/uqdgree5/.local/lib/python2.7/site-packages (from -r requirements.txt (line 4

Collecting biopython>=1.66 (from IsoCon)

 Downloading biopython-1.70-cp27-cp27m-manylinux1_x86_64.whl (2.2MB)

 100% |████████████████████████████████| 2.2MB 258kB/s
Collecting decorator>=4.1.0 (from networkx>=1.10->-r requirements.txt (line 3))

 Downloading decorator-4.2.1-py2.py3-none-any.whl

Requirement already satisfied: numpy in /opt/python/lib/python2.7/site-packages/numpy-1.12.1-py2.7-linux-x86_64.egg (from parasail>=1.1.10->-

Building wheels for collected packages: IsoCon, edlib, networkx

 Running setup.py bdist_wheel for IsoCon ... done

 Stored in directory: /home/uqdgree5/.cache/pip/wheels/70/96/d6/aa8d054b7e07dfbecfd1bb146cadb3500e2f4ef1cef5233121

 Running setup.py bdist_wheel for edlib ... done

 Stored in directory: /home/uqdgree5/.cache/pip/wheels/5d/47/87/8c9699daa744d6a0d604d0a571d87c78b90013e40ef6c4759d

 Running setup.py bdist_wheel for networkx ... done

 Stored in directory: /home/uqdgree5/.cache/pip/wheels/a0/33/4e/7c9228ea77f8090e895d8d2b76f3b5a76997a5b3edeb4e2c6f

Successfully built IsoCon edlib networkx

Installing collected packages: edlib, pysam, decorator, networkx, biopython, IsoCon

Successfully installed IsoCon-0.3.1 biopython-1.70 decorator-4.2.1 edlib-1.2.3 networkx-2.1 pysam-0.14.1

Footnote: R Versions on HPC

Each HPC node has access to several versions of R. This sections will hopefully illuminate that situation.

---------------------------------- /opt/modulefiles/applications -----------------------------------

R/3.4.0(default)

------------------------------------ /sw/Modules/ContainedApps -------------------------------------

R/3.5.0

--------------------------------------- /sw/B18a/modulefiles ---------------------------------------

R/3.4.3

ROCKS R

A ROCKS rolled version of R is installed into the operating system of each compute node into /opt/modulefiles/applications.

Currently that is module load R/3.4.0 and is built with, and configured to use, the Intel compiler.

uqdgree5@awoonga1:~> module display R/3.4.0

/opt/modulefiles/applications/R/3.4.0:

module-whatis R

module-whatis Version: 3.4.0

module-whatis Description: R

prepend-path PATH /opt/R/bin

prepend-path R_LIBS /opt/R/local/lib

prepend-path LD_LIBRARY_PATH /opt/R/lib64/R/lib

setenv RHOME /opt/R

module load intel

A well hidden secret is the existence of many R library packages for this "on board" version of R.

uqdgree5@awoonga1:~> ls /opt/R/local/lib/

abind cubature GenomeInfoDbData logspline purrr sna

acepack curl GenomicAlignments magrittr quadprog snow

akima DatABEL GenomicFeatures maps quantreg sp

alr3 data.table GenomicRanges maptools R6 spacetime

annotate DBI ggplot2 markdown randomForest SparseM

AnnotationDbi DelayedArray git2r matlab raster stabs

aoos DEoptimR glue matrixcalc RColorBrewer statmod

ape desc gplots MatrixModels Rcpp statnet.common

arm DESeq2 graph matrixStats RcppArmadillo stringi

assertthat devtools gridExtra mboost RcppEigen stringr

backports dichromat gstat mclust RCurl strucchange

base64 digest gtable mcmc reshape2 SummarizedExperiment

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

10 of 11 21/6/22, 14:02

base64enc doMC gtools memoise rgdal survey

bdsmatrix dplyr GWAF mi rgenoud survival

BH e1071 haplo.stats mime rgeos tcltk2

bindr Ecdat hexbin minqa Rgraphviz TeachingDemos

bindrcpp Ecfun highr miscTools rhdf5 TH.data

Biobase edgeR Hmisc mix rjson tibble

BiocGenerics ellipse htmlTable mlbench rlang tidyr

BiocInstaller epitools htmltools modeltools rlecuyer tidyselect

BiocParallel evaluate htmlwidgets modules rmeta timeDate

biomaRt exomePeak httr multcomp Rmpi tis

Biostrings fda hwriter munsell rms tkrplot

bit fmcsR ineq mvtnorm robustbase tripack

bit64 FNN InteractionSet ncdf4 ROCR urca

bitops foreach intervals network roxygen2 VGAM

blob foreign IRanges nlme rpart.plot viridis

bnlearn formatR iterators nloptr rprojroot viridisLite

brew Formula jpeg nnls RSAGA whisker

BSgenome fts jsonlite numDeriv Rsamtools withr

car futile.logger kernlab nws RSQLite XML

caTools futile.options knitr openssl rstudioapi xml2

checkmate gap labeling oz rtracklayer xtable

ChemmineR gdata lambda.r party RUnit xts

chron gee lattice pbkrtest S4Vectors XVector

coda geepack latticeExtra PBSmodelling sandwich yaml

coin GenABEL lazyeval pkgconfig scales zlibbioc

colorspace GenABEL.data ldlasso plogr scatterplot3d zoo

combinat genefilter leaps plyr sem

commonmark geneplotter limma polspline sgeostat

coxme genetics lme4 PredictABEL shapefiles

crayon GenomeInfoDb locfit pspline ShortRead

/sw R

Unfortunately, in some circumstances, the on-board version of R exhibited memory leaks.

A (newer) version of R was built from source and installed into /sw.

/sw/B18a/modulefiles/R/3.4.3:

module-whatis R

module-whatis Version: 3.4.3

module-whatis Description: R

setenv RHOME /sw/B18a/R

module load intel/2017.4

prepend-path PATH /sw/B18a/R/bin

prepend-path R_LIBS /sw/B18a/R/local/lib

prepend-path LD_LIBRARY_PATH /sw/B18a/R/lib64/R/lib

It does have most of the same extensive set of additional library packages available. You may need to build some additional

packages for yourself.

See the Building Packages for R and Python User Guide for information about how to do this.

Singularity R

To rapidly respond to a request for the R 3.5.0 release we have deployed a software container which is based on a newer

operating system image.

The container is not a comprehensive installation of R. It is based on a packaged version provided by a developer.

We are still awaiting the release of complete R 3.5.0 packages for an operating system that can be supported by our container

mechanism (no, we cannot use the latest Arch Linux)

uqdgree5@awoonga1:~> module display R/3.5.0

/sw/Modules/ContainedApps/R/3.5.0:

module-whatis

module-whatis R V3.5.0 within a container

module-whatis david.green@uq.edu.au

module-whatis 20180518

module-whatis For more detail, run

module-whatis module help R

module-whatis

module load singularity

system shopt -s expand_aliases

set-alias R /sw/Containers/singularity/bin/run_singularity run /sw/Containers/singularity/images/R-3.5.0

set-alias shell /sw/Containers/singularity/bin/run_singularity shell /sw/Containers/singularity/images/R-3.5.0

To use this version of R interactively, you just need load the module and type the command (alias) R.

To use this version of R in a regular batch job you should consult the relevant section of the Containers User Guide.

Installation of Packages for Scripting Languages http://www2.rcc.uq.edu.au/hpc/guides/index.html?secu...

11 of 11 21/6/22, 14:02

http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html
http://www2.rcc.uq.edu.au/hpc/guides/index.html?secure/Installation_of_Packages_for_Scripting_Languages.html
http://www2.rcc.uq.edu.au/hpc/guides/index.html?public/Containers.html#Using-Software-Containers-in-Batch-Jobs
http://www2.rcc.uq.edu.au/hpc/guides/index.html?public/Containers.html#Using-Software-Containers-in-Batch-Jobs

